Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675645

RESUMO

In the realm of predictive toxicology for small molecules, the applicability domain of QSAR models is often limited by the coverage of the chemical space in the training set. Consequently, classical models fail to provide reliable predictions for wide classes of molecules. However, the emergence of innovative data collection methods such as intensive hackathons have promise to quickly expand the available chemical space for model construction. Combined with algorithmic refinement methods, these tools can address the challenges of toxicity prediction, enhancing both the robustness and applicability of the corresponding models. This study aimed to investigate the roles of gradient boosting and strategic data aggregation in enhancing the predictivity ability of models for the toxicity of small organic molecules. We focused on evaluating the impact of incorporating fragment features and expanding the chemical space, facilitated by a comprehensive dataset procured in an open hackathon. We used gradient boosting techniques, accounting for critical features such as the structural fragments or functional groups often associated with manifestations of toxicity.


Assuntos
Algoritmos , Relação Quantitativa Estrutura-Atividade , Toxicologia/métodos , Humanos
2.
J Comput Aided Mol Des ; 37(4): 183-200, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943645

RESUMO

Multi-task learning in deep neural networks has become a topic of growing importance in many research fields, including drug discovery. However, applying multi-task learning poses new challenges in improving prediction performance. This study investigated the potential of training data enrichment to enhance multi-task model prediction quality in drug discovery. The study evaluated four scenarios with varying degrees of information capacity of the training data and applied two types of test data to evaluate prediction performance. We used three datasets: ViralChEMBL, which consisted of binary activities of compounds against viral species, was applied for the classification task; pQSAR(159) and pQSAR(4267), which consisted of bio-activities of compounds and assays from the research of the profile-QSAR method, were applied for regression tasks. We built multi-task models based on the feed-forward DNNs using the PyTorch framework. Our findings showed that training data enrichment could be an effective means of enhancing prediction performance in multi-task learning, but the degree of improvement depends on the quality of the training data. The more unique compounds and targets the training data included, the more new compound-target interactions are required for prediction improvement. Also, we found out that even using multi-task learning, one could not predict the interactions of compounds that are highly dissimilar from those used for model training. The study provides some recommendations for effectively employing multi-task learning in drug discovery to improve prediction accuracy and facilitate the discovery of novel drug candidates.


Assuntos
Descoberta de Drogas , Redes Neurais de Computação , Descoberta de Drogas/métodos
3.
RSC Med Chem ; 13(7): 822-830, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35923717

RESUMO

NMDA (N-methyl-d-aspartate) receptor antagonists are promising tools for the treatment of a wide variety of central nervous system impairments including major depressive disorder. We present here the activity optimization process of a biphenyl-based NMDA negative allosteric modulator (NAM) guided by free energy calculations, which led to a 100 times activity improvement (IC50 = 50 nM) compared to a hit compound identified in virtual screening. Preliminary calculation results suggest a low affinity for the human ether-a-go-go-related gene ion channel (hERG), a high affinity for which was earlier one of the main obstacles for the development of first-generation NMDA-receptor negative allosteric modulators. The docking study and the molecular dynamics calculations suggest a completely different binding mode (ifenprodil-like) compared to another biaryl-based NMDA NAM EVT-101.

4.
ACS Omega ; 7(11): 9710-9719, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35350354

RESUMO

Dissociation induced by the accumulation of internal energy via collisions of ions with neutral molecules is one of the most important fragmentation techniques in mass spectrometry (MS), and the identification of small singly charged molecules is based mainly on the consideration of the fragmentation spectrum. Many research studies have been dedicated to the creation of databases of experimentally measured tandem mass spectrometry (MS/MS) spectra (such as MzCloud, Metlin, etc.) and developing software for predicting MS/MS fragments in silico from the molecular structure (such as MetFrag, CFM-ID, CSI:FingerID, etc.). However, the fragmentation mechanisms and pathways are still not fully understood. One of the limiting obstacles is that protomers (positive ions protonated at different sites) produce different fragmentation spectra, and these spectra overlap in the case of the presence of different protomers. Here, we are proposing to use a combination of two powerful approaches: computing fragmentation trees that carry information of all consecutive fragmentations and consideration of the MS/MS data of isotopically labeled compounds. We have created PyFragMS-a web tool consisting of a database of annotated MS/MS spectra of isotopically labeled molecules (after H/D and/or 16O/18O exchange) and a collection of instruments for computing fragmentation trees for an arbitrary molecule. Using PyFragMS, we investigated how the site of protonation influences the fragmentation pathway for small molecules. Also, PyFragMS offers capabilities for performing database search when MS/MS data of the isotopically labeled compounds are taken into account.

5.
ACS Omega ; 6(45): 30743-30751, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34805702

RESUMO

Humans prefer visual representations for the analysis of large databases. In this work, we suggest a method for the visualization of the chemical reaction space. Our technique uses the t-SNE approach that is parameterized using a deep neural network (parametric t-SNE). We demonstrated that the parametric t-SNE combined with reaction difference fingerprints could provide a tool for the projection of chemical reactions on a low-dimensional manifold for easy exploration of reaction space. We showed that the global reaction landscape projected on a 2D plane corresponds well with the already known reaction types. The application of a pretrained parametric t-SNE model to new reactions allows chemists to study these reactions in a global reaction space. We validated the feasibility of this approach for two commercial drugs, darunavir and montelukast. We believe that our method can help to explore reaction space and will inspire chemists to find new reactions and synthetic ways.

7.
PLoS One ; 16(7): e0253835, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197504

RESUMO

We performed large-scale numerical simulations using a composite model to investigate the infection spread in a supermarket during a pandemic. The model is composed of the social force, purchasing strategy and infection transmission models. Specifically, we quantified the infection risk for customers while in a supermarket that depended on the number of customers, the purchase strategies and the physical layout of the supermarket. The ratio of new infections compared to sales efficiency (earned profit for customer purchases) was computed as a factor of customer density and social distance. Our results indicate that the social distance between customers is the primary factor influencing infection rate. Supermarket layout and purchasing strategy do not impact social distance and hence the spread of infection. Moreover, we found only a weak dependence of sales efficiency and customer density. We believe that our study will help to establish scientifically-based safety rules that will reduce the social price of supermarket business.


Assuntos
Transmissão de Doença Infecciosa/estatística & dados numéricos , Modelos Biológicos , Pandemias/estatística & dados numéricos , Supermercados , Simulação por Computador , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Pandemias/prevenção & controle , Medição de Risco/estatística & dados numéricos
9.
Sci Rep ; 11(1): 14798, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285269

RESUMO

We developed a Transformer-based artificial neural approach to translate between SMILES and IUPAC chemical notations: Struct2IUPAC and IUPAC2Struct. The overall performance level of our model is comparable to the rule-based solutions. We proved that the accuracy and speed of computations as well as the robustness of the model allow to use it in production. Our showcase demonstrates that a neural-based solution can facilitate rapid development keeping the required level of accuracy. We believe that our findings will inspire other developers to reduce development costs by replacing complex rule-based solutions with neural-based ones.

10.
Hum Brain Mapp ; 42(15): 4844-4856, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34327772

RESUMO

In the current article, we present the first solid-state sensor feasible for magnetoencephalography (MEG) that works at room temperature. The sensor is a fluxgate magnetometer based on yttrium-iron garnet films (YIGM). In this feasibility study, we prove the concept of usage of the YIGM in terms of MEG by registering a simple brain induced field-the human alpha rhythm. All the experiments and results are validated with usage of another kind of high-sensitive magnetometers-optically pumped magnetometer, which currently appears to be well-established in terms of MEG.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Magnetoencefalografia/instrumentação , Magnetometria/instrumentação , Adulto , Estudos de Viabilidade , Humanos
11.
Environ Health Perspect ; 129(4): 47013, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33929906

RESUMO

BACKGROUND: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests. In silico models built using existing data facilitate rapid acute toxicity predictions without using animals. OBJECTIVES: The U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Acute Toxicity Workgroup organized an international collaboration to develop in silico models for predicting acute oral toxicity based on five different end points: Lethal Dose 50 (LD50 value, U.S. Environmental Protection Agency hazard (four) categories, Globally Harmonized System for Classification and Labeling hazard (five) categories, very toxic chemicals [LD50 (LD50≤50mg/kg)], and nontoxic chemicals (LD50>2,000mg/kg). METHODS: An acute oral toxicity data inventory for 11,992 chemicals was compiled, split into training and evaluation sets, and made available to 35 participating international research groups that submitted a total of 139 predictive models. Predictions that fell within the applicability domains of the submitted models were evaluated using external validation sets. These were then combined into consensus models to leverage strengths of individual approaches. RESULTS: The resulting consensus predictions, which leverage the collective strengths of each individual model, form the Collaborative Acute Toxicity Modeling Suite (CATMoS). CATMoS demonstrated high performance in terms of accuracy and robustness when compared with in vivo results. DISCUSSION: CATMoS is being evaluated by regulatory agencies for its utility and applicability as a potential replacement for in vivo rat acute oral toxicity studies. CATMoS predictions for more than 800,000 chemicals have been made available via the National Toxicology Program's Integrated Chemical Environment tools and data sets (ice.ntp.niehs.nih.gov). The models are also implemented in a free, standalone, open-source tool, OPERA, which allows predictions of new and untested chemicals to be made. https://doi.org/10.1289/EHP8495.


Assuntos
Órgãos Governamentais , Animais , Simulação por Computador , Ratos , Testes de Toxicidade Aguda , Estados Unidos , United States Environmental Protection Agency
12.
IEEE Trans Biomed Eng ; 68(6): 1811-1819, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32877329

RESUMO

OBJECTIVE: This paper develops a novel approach for fast and reliable reconstruction of EEG sources in MRI-based head models. METHODS: The inverse EEG problem is reduced to the Cauchy problem for an elliptic partial-derivative equation. The problem is transformed into a regularized minimax problem, which is directly approximated in a finite-element space. The resulting numerical method is efficient and easy to program. It eliminates the need to solve forward problems, which can be a tedious task. The method applies to complex anatomical head models, possibly containing holes in surfaces, anisotropic conductivity, and conductivity variations inside each tissue. The method has been verified on a spherical shell model and an MRI-based head. RESULTS: Numerical experiments indicate high accuracy of localization of brain activations (both cortical potential and current) and rapid execution time. CONCLUSION: This study demonstrates that the proposed approach is feasible for EEG source analysis and can serve as a rapid and reliable tool for EEG source analysis. SIGNIFICANCE: The significance of this study is that it develops a fast, accurate, and simple numerical method of EEG source analysis, applicable to almost arbitrary complex head models.


Assuntos
Eletroencefalografia , Modelos Neurológicos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Análise de Elementos Finitos , Cabeça/diagnóstico por imagem
13.
J Chem Inf Model ; 60(12): 5946-5956, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33183000

RESUMO

Derivation of structure-kinetics relationships can help rational design and development of new small-molecule drug candidates with desired residence times. Efforts are now being directed toward the development of efficient computational methods. Currently, there is a lack of solid, high-throughput binding kinetics prediction approaches on bigger datasets. We present a prediction method for binding kinetics based on the machine learning analysis of protein-ligand structural features, which can serve as a baseline for more sophisticated methods utilizing molecular dynamics (MD). We showed that the random forest algorithm is capable of learning the protein binding site secondary structure and backbone/side-chain features to predict the binding kinetics of protein-ligand complexes but still with inferior performance to that of MD-based descriptor analysis. MD simulations had been applied to a limited number of targets and a series of ligands in terms of kinetics analysis, and we believe that the developed approach may guide new studies. The method was trained on a newly curated database of 501 protein-ligand unbinding rate constants, which can also be used for testing and training the binding kinetics prediction models.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Cinética , Ligantes , Aprendizado de Máquina , Ligação Proteica , Proteínas/metabolismo
14.
Circ Arrhythm Electrophysiol ; 13(10): e008249, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32921129

RESUMO

BACKGROUND: Atrial fibrillation (AF) can be maintained by localized intramural reentrant drivers. However, AF driver detection by clinical surface-only multielectrode mapping (MEM) has relied on subjective interpretation of activation maps. We hypothesized that application of machine learning to electrogram frequency spectra may accurately automate driver detection by MEM and add some objectivity to the interpretation of MEM findings. METHODS: Temporally and spatially stable single AF drivers were mapped simultaneously in explanted human atria (n=11) by subsurface near-infrared optical mapping (NIOM; 0.3 mm2 resolution) and 64-electrode MEM (higher density or lower density with 3 and 9 mm2 resolution, respectively). Unipolar MEM and NIOM recordings were processed by Fourier transform analysis into 28 407 total Fourier spectra. Thirty-five features for machine learning were extracted from each Fourier spectrum. RESULTS: Targeted driver ablation and NIOM activation maps efficiently defined the center and periphery of AF driver preferential tracks and provided validated annotations for driver versus nondriver electrodes in MEM arrays. Compared with analysis of single electrogram frequency features, averaging the features from each of the 8 neighboring electrodes, significantly improved classification of AF driver electrograms. The classification metrics increased when less strict annotation, including driver periphery electrodes, were added to driver center annotation. Notably, f1-score for the binary classification of higher-density catheter data set was significantly higher than that of lower-density catheter (0.81±0.02 versus 0.66±0.04, P<0.05). The trained algorithm correctly highlighted 86% of driver regions with higher density but only 80% with lower-density MEM arrays (81% for lower-density+higher-density arrays together). CONCLUSIONS: The machine learning model pretrained on Fourier spectrum features allows efficient classification of electrograms recordings as AF driver or nondriver compared with the NIOM gold-standard. Future application of NIOM-validated machine learning approach may improve the accuracy of AF driver detection for targeted ablation treatment in patients.


Assuntos
Potenciais de Ação , Fibrilação Atrial/diagnóstico , Técnicas Eletrofisiológicas Cardíacas , Análise de Fourier , Frequência Cardíaca , Aprendizado de Máquina , Imagens com Corantes Sensíveis à Voltagem , Fibrilação Atrial/fisiopatologia , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Espectroscopia de Luz Próxima ao Infravermelho , Fatores de Tempo
15.
Anal Bioanal Chem ; 412(28): 7767-7776, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32860519

RESUMO

Retention time is an important parameter for identification in untargeted LC-MS screening. Precise retention time prediction facilitates the annotation process and is well known for proteomics. However, the lack of available experimental information for a long time has limited the prediction accuracy for small molecules. Recently introduced large databases for small-molecule retention times make possible reliable machine learning-based predictions for the whole diversity of compounds. Applying simple projections may expand these predictions on various LC systems and conditions. In our work, we describe a complex approach to predict retention times for nano-HPLC that includes the consequent deployment of binary and regression gradient boosting models trained on the METLIN small-molecule dataset and simple projection of the results with a small number of easily available compounds onto nano-HPLC separations. The proposed model outperforms previous attempts to use machine learning for predictions with a 46-s mean absolute error. The overall performance after transfer to nano-LC conditions is less than 155 s (10.8%) in terms of the median absolute (relative) error. To illustrate the applicability of the described approach, we successfully managed to eliminate averagely 25 to 42% of false-positives with a filter threshold derived from ROC curves. Thus, the proposed approach should be used in addition to other well-established in silico methods and their integration may broaden the range of correctly identified molecules.

16.
ACS Omega ; 5(25): 15039-15051, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32632398

RESUMO

Recommender systems (RSs), which underwent rapid development and had an enormous impact on e-commerce, have the potential to become useful tools for drug discovery. In this paper, we applied RS methods for the prediction of the antiviral activity class (active/inactive) for compounds extracted from ChEMBL. Two main RS approaches were applied: collaborative filtering (Surprise implementation) and content-based filtering (sparse-group inductive matrix completion (SGIMC) method). The effectiveness of RS approaches was investigated for prediction of antiviral activity classes ("interactions") for compounds and viruses, for which some of their interactions with other viruses or compounds are known, and for prediction of interaction profiles for new compounds. Both approaches achieved relatively good prediction quality for binary classification of individual interactions and compound profiles, as quantified by cross-validation and external validation receiver operating characteristic (ROC) score >0.9. Thus, even simple recommender systems may serve as an effective tool in antiviral drug discovery.

17.
J Chem Inf Model ; 60(6): 2977-2988, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32311268

RESUMO

The potential to predict solvation free energies (SFEs) in any solvent using a machine learning (ML) model based on thermodynamic output, extracted exclusively from 3D-RISM simulations in water is investigated. The models on multiple solvents take into account both the solute and solvent description and offer the possibility to predict SFEs of any solute in any solvent with root mean squared errors less than 1 kcal/mol. Validations that involve exclusion of fractions or clusters of the solutes or solvents exemplify the model's capability to predict SFEs of novel solutes and solvents with diverse chemical profiles. In addition to being predictive, our models can identify the solute and solvent features that influence SFE predictions. Furthermore, using 3D-RISM hydration thermodynamic output to predict SFEs in any organic solvent reduces the need to run 3D-RISM simulations in all these solvents. Altogether, our multisolvent models for SFE predictions that take advantage of the solvation effects are expected to have an impact in the property prediction space.


Assuntos
Água , Entropia , Soluções , Solventes , Termodinâmica
18.
ACS Omega ; 5(10): 5150-5159, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201802

RESUMO

In this work, we present graph-convolutional neural networks for the prediction of binding constants of protein-ligand complexes. We derived the model using multi task learning, where the target variables are the dissociation constant (K d), inhibition constant (K i), and half maximal inhibitory concentration (IC50). Being rigorously trained on the PDBbind dataset, the model achieves the Pearson correlation coefficient of 0.87 and the RMSE value of 1.05 in pK units, outperforming recently developed 3D convolutional neural network model K deep.

19.
Ecotoxicol Environ Saf ; 194: 110410, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32163774

RESUMO

Environment pollutants, especially those from total petroleum hydrocarbons (TPH), have a highly complex chemical, biological and physical impact on soils. Here we study this influence via modelling the TPH acute phytotoxicity effects on eleven samples of soils from Sakhalin island in greenhouse conditions. The soils were contaminated with crude oil in different doses ranging from the 3.0-100.0 g kg-1. Measuring the Hordeum vulgare root elongation, the crucial ecotoxicity parameter, we have estimated. We have also investigated the contrast effect in different soils. To predict TPH phytotoxicity different machine learning models were used, namely artificial neural network (ANN) and support vector machine (SVM). The models under discussion were proved to be valid using the mean absolute error method (MAE), the root mean square error method (RMSE), and the coefficient of determination (R2). We have shown that ANN and SVR can successfully predict barley response based on soil chemical properties (pH, LOI, N, P, K, clay, TPH). The best achieved accuracy was as following: MAE - 8.44, RMSE -11.05, and R2 -0.80.


Assuntos
Inteligência Artificial , Hordeum/efeitos dos fármacos , Hidrocarbonetos/toxicidade , Modelos Teóricos , Petróleo/toxicidade , Poluentes do Solo/toxicidade , Hordeum/metabolismo , Hidrocarbonetos/análise , Ilhas , Redes Neurais de Computação , Petróleo/análise , Federação Russa , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
20.
Brain Sci ; 10(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033106

RESUMO

It has been proposed that the effectiveness of non-invasive brain stimulation (NIBS) as a cognitive enhancement technique may be enhanced by combining the stimulation with concurrent cognitive activity. However, the benefits of such a combination in comparison to protocols without ongoing cognitive activity have not yet been studied. In the present study, we investigate the effects of fMRI-guided high-frequency repetitive transcranial magnetic stimulation (HF rTMS) over the left dorsolateral prefrontal cortex (DLPFC) on working memory (WM) in healthy volunteers, using an n-back task with spatial and verbal stimuli and a spatial span task. In two combined protocols (TMS + WM + (maintenance) and TMS + WM + (rest)) trains of stimuli were applied in the maintenance and rest periods of the modified Sternberg task, respectively. We compared them to HF rTMS without a cognitive load (TMS + WM-) and control stimulation (TMS - WM + (maintenance)). No serious adverse effects appeared in this study. Among all protocols, significant effects on WM were shown only for the TMS + WM- with oppositely directed influences of this protocol on storage and manipulation in spatial WM. Moreover, there was a significant difference between the effects of TMS + WM- and TMS + WM + (maintenance), suggesting that simultaneous cognitive activity does not necessarily lead to an increase in TMS effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA